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The paper presents an analytical approach to the problem of vehicle}bridge
dynamic interaction. Starting from early studies based on a simply supported beam
interacting with a lumped mass moving at constant speed, in recent years
researchers have improved the models of both the bridge and the vehicle. On this
basis, the bridge is modelled here as a multi-span continuous isotropic plate; its
response to external loads is de"ned by applying the mode superposition principle
and takes into account both #exural and torsional mode shapes, the latter being
usually neglected in the literature. The plate is considered proportionally damped
and its modes are computed by means of the Rayleigh}Ritz method. The scheme
adopted for the vehicle consists of a seven degrees-of-freedom system moving at
constant speed over the isotropic rough bridge surface. The numerical
investigation, based on these analytical models, refers to a three-span bridge and
includes the importance of torsional mode shapes, of road surface irregularities and
of vehicle speed. ( 1999 Academic Press
1. INTRODUCTION

The problem of vehicle-bridge interaction has been the subject of study for many
researchers during the last few years. A number of di!erent approaches can be
found throughout the literature, most of them attempting to improve the analytical
model of the physical interaction between the bridge and the vehicles moving over
it.

The problem has become more interesting with bridge structures getting
gradually lighter and more #exible, while the speed and the weight of moving loads
have grown conversely.
Early models adopted to simulate bridge}vehicle interaction normally considered
simply supported beams with a single, lumped load moving at constant speed along
its span. These models mainly evolve from the original work by Timoshenko et al.
[1] and Fryba [2].
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This simple case has been studied by using di!erent mathematical approaches,
i.e. by using the Euler}Bernoulli beam [3,4], or the Timoshenko representation of
the beam with moving loads [5].

Some improvements have been made by the adoption of more re"ned models of
the moving load, namely a spring-dashpot single-degree-of-freedom (s.d.o.f ) vehicle
[6], or multi-degrees-of-freedom (m.d.o.f ) systems with separated body and wheel
masses [2, 7}10]; their speed has sometimes been considered non-constant [11, 12];
the road surface, considered smooth in many papers, has also been introduced
in the models by using random distribution of roughness [6, 8}10]; the main
drawback of the above-mentioned models is their inability to calculate the e!ects of
torsional shapes of the bridge deck, thus introducing a severe approximation with
respect to the real structure.

By replacing the beams with an isotropic plate to represent the deck behaviour,
a consistent step forward has been taken. With regard to this, vast literature can
be found concerning the modal behaviour of plates with di!erent boundary
conditions: for at least two simply supported opposite edges, the LeH vy-type solution
reported by Leissa [13], Sakata [14] and Gorman [15] can be adopted, while for
all other boundary conditions, di!erent solution methods can be found, as in the
classic work by Gorman [15], or by using the well-known Rayleigh}Ritz solution
[13, 16}25] or, also, by using the Kantorovich method [20, 26]. With respect to the
Rayleigh}Ritz approach, di!erent choices allowed for the admissible functions
should be mentioned: characteristic beam functions [13, 21, 23], two-dimensional
plate functions [17, 25] or orthogonal polynomial functions [16, 18}20, 22, 24].

This paper deals with the interaction of multi-span continuous bridges modelled by
isotropic plates with m.d.o.f. vehicles moving at constant speed. The surface considered
as the interface between the vehicle and the bridge can be smooth or rough. The
same kind of problem has already been faced by other authors by using FE
simulations for the bridge deck [27] or by considering planar vehicle models [28].

In this paper, the modal superposition of analytical de#ections, together with
a modal decomposition of the forces acting on the bridge, is adopted and the
vehicle}bridge interaction is computed iteratively. In principle, the vehicle can be
modelled in many ways: the one used throughout the paper has seven d.o.f.
including pitch, roll and heave motions.

Some simulations are reported, showing the contribution of torsional modes on
the overall displacement at the mid-span; the importance of surface roughness and
vehicle speed are also pointed out; the ampli"cation factor, often reported as
a function of the span length [9], is presented here with respect to the vehicle speed
as in references [6, 27].

2. DYNAMIC RESPONSE OF BRIDGES TO VEHICLE LOADS

2.1. EQUATION OF MOTION AND MODAL SUPERPOSITION

The dynamic behaviour of multi-span continuous bridges is governed by the
equation [29]

mN (x)
L2w
L t2

(x, t)#CG
Lw
L t

(x, t)H#¸Mw(x, t)N"f (x, t), (1)
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where x is a two-dimensional position vector, t is the time, mN (x) is the distrib-
uted mass per unit area, w(x, t) is the transverse de#ection of the bridge,
measured upwards from its equilibrium position, ¸ is a di!erential sti!ness
operator with respect to spatial variables, C is a viscous damping operator with
respect to spatial variables and f (x, t) is the force transmitted by the vehicle onto the
bridge.

The general formulation of the equation of motion is based on the following
assumptions: the structure has a linear elastic behaviour with small de#ections and
viscous damping, and the e!ects of shear deformation and rotary inertia are
neglected.

By using a mode superposition technique, the solution of equation (1) can be
written as

w(x, t)"
=
+
k/1

U
k
(x)¹

k
(t), (2)

where k is the mode number, U
k
(x) are the mass normalized undamped mode

shapes and ¹
k
(t) is the kth normal co-ordinate.

If the mode functions satisfy the following orthogonality relationships, then the
modes can be uncoupled:
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where d
hk

is equal to 1 if h"k and zero otherwise, u
k

and f
k

are the kth
undamped natural frequency and modal damping ratio, respectively, and S is
the surface area of the bridge. The "rst two orthogonality relationships are satis"ed
if the mode shapes are computed from the undamped free vibration corresponding
to equation (1) ( f (x, t)"0), while the third will be satis"ed if (proportional
damping)
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a and b being arbitrary constants. In this case f
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is given by reference [29]:
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Substituting the modal expansion (2) into equation (1), multiplying by U
k
(x) and

integrating over the surface of the bridge, one would obtain the response of the
system for mode k:
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The impulse response function related to each mode has the following form:
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It can be shown [7] that the response of the system to a set of dynamic wheel loads,
P
l
(t), applied at moving position x

l
(t) (see Figure 1) and assumed positive upwards,

is given by the convolution integral:
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where N
t
is the number of tyres of the vehicle. The convolution integral is evaluated

in the time domain, but it is also possible to choose its frequency domain
formulation by taking advantage of the fast Fourier transform algorithm [7].

2.2. THE BRIDGE MODEL: FLEXURAL VIBRATION OF RECTANGULAR PLATES

The bridge is modelled as a multi-span thin rectangular plate, of uniform
thickness and isotropic material, lying in the x}y plane and bounded by the lines at
x"0, a and at y"0, b (Figure 2). The N-span continuous plate is simply
supported along the edges x"0 and x"a, free at the edges y"0 and y"b and
passes over N-1 rigid line supports.

The equation of motion for the free vibrations of lightly damped rectangular
plates, according to reference [29], is

mN
L2w
Lt2

#CG
Lw
LtH#DA

L4w
Lx4

#2
L4w

Lx2Ly2
#

L4w
Ly4B"0, (9)

where D"Eh3/12(1!l2) is the plate #exural sti!ness, E is the Young's modulus,
h is the plate thickness, m is the Poisson's ratio. The approximate solutions for
frequencies and mode shapes of the vibrating plate are obtained by using
the Rayleigh}Ritz method, which consists of assuming the undamped de#ection
function as a series of admissible functions with coe$cients minimizing Rayleigh's
quotient. For a uniform plate, vibrating harmonically with amplitude U(x, y) and



Figure 1. Continuous model of the bridge.

Figure 2. N-span continuous rectangular plate.
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angular frequency u, the maxima strain and kinetic energies are given by:
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It is now opportune to introduce the undimensioned space variables m"x/a and
g"y/b.

Hence the de#ection shape U becomes
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where u
i
(m) and t

j
(g) are the assumed admissible functions along the x and y

directions, while A
ij

are the undetermined coe$cients. According to the procedure
adopted in references [13, 23], u

i
(m) and t

j
(g) are eigenfunctions satisfying the

equation of motion for free vibrations of an Euler}Bernoulli beam, in the x and
y directions respectively, and also the desired boundary conditions on both the
perimeter and the rigid line supports. In particular u

i
(m) are the eigenfunction of an

Euler}Bernoulli beam on multiple supports.
Substituting equation (12) into equations (10) and (11) and minimizing Rayleigh's

quotient with respect to each coe$cient A
ij

leads to the eigenvalue equation
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2.3. VEHICLE MODEL AND DYNAMIC BRIDGE}VEHICLE INTERACTION

Figure 3 shows a diagram of the vehicle dynamic model excited by bridge surface
irregularities. The vehicle body is rigid, subject to heave, roll and pitch motions.
The linear vehicle model, similar to that employed in reference [30] and also
similar to that described in reference [27], which were modelled according to
the truck design loadings included in the American Association of State High-way
and Transportation O$cials (AASHTO) speci"cations, has some limitations
since #exible body modes, wheel unbalance, transverse motions of the centre of
gravity, suspensions kinematics, gyroscopic e!ects, etc., have all been left aside. The
seven second order ordinary di!erential equations have been obtained by using
Lagrange's formulation and they have been gathered into 14 "rst order state
equations.

The displacements under the tyres u
1l
, u

1r
, u

2l
, u

2r
, representing the forcing terms in

the vehicle's equations of motion, are given by the sum of the surface irregularities
r(t) and of the bridge de#ection w(x

l
, t), corresponding to the tyre position x

l
at



Figure 3. Sketch of the seven d.o.f. system and its parameters. z, z
1
, z

2
" vertical displacement of

body, front and rear axle; h"pitch displacement of the body; /"roll displacement of the body; /
1
,

/
2
"front and rear axle angular displacements; u

1l
, u

1r
, u

2l
, u

2r
"road displacements under left front,

right front, left rear, right rear tyre.
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time t, that is,

u(t)"w(x
l
, t)#r(t). (15)

The loads P
l
(t) transmitted by the moving tyres to the bridge surface are therefore

functions of the bridge de#ection w(x
l
, t): the determination of the bridge dynamic

response involves an integral equation and therefore requires the iterative procedure
presented in reference [7] and illustrated in the #ow-chart of Figure 4, where
T
vp

represents the time the vehicle takes to cross the bridge completely and tol is the
convergence tolerance. A similar iterative method, called the &&iterative dynamic
substructuring method (IDSM)'' can be found in reference [31]. The fourteen "rst



Figure 4. Iterative procedure for the determination of bridge de#ection.
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order state equations of the vehicle have been solved by Runge-Kutta numerical
integration.

2.4. MODEL OF THE BRIDGE SURFACE IRREGULARITIES

In references [6, 9] it is shown how an easy and realistic description of the road
surface roughness can be given through an ergodic stationary Gaussian random
process, described by its spectral density S versus the spatial frequency c:

S(c)"G
a ) c~b,
0

c
0
(c(c

J
,

c(c
0
; c'c

J
,

(16)

where c
0

and c
J
are cut-o! spatial frequencies, b is a constant, whose value is 2, and

a is a spectral roughness coe$cient, whose value depends on the road conditions:
a(0)4]10~6 m/cycle for a good surface, 0)4]10~6(a(0)64]10~6 m/cycle for
an ordinary surface and 0)64]10~6(a(1]10~6 m/cycle for a damaged surface.
If < (m/s) is the constant speed of the vehicle, the temporal frequency f (Hz)
corresponding to the spatial frequency c, is

f"c<. (17)
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So, road irregularity exciting the vehicle at time t in the position x(t)"<t along the
bridge span can be obtained according to the procedure adopted by reference [8].

In order to generate the appropriate correlation between the tracks roughness
under the left and right wheels, the hypothesis of isotropy of the road surface is
adopted here. It can be shown through a comparison between the measured and
calculated coherency of two parallel tracks [32, 33] that the proposed model is
applicable in a variety of cases. The two- dimensional power spectral density of the
road surface satisfying the hypothesis of isotropy (invariance with respect to any
rotation of the reference co-ordinate system) has the following form, as reported in
reference [32]:
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where c
x
and c

y
are the spatial frequencies along the x- and y- axis. The coherency

function between left and right tracks thus becomes
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where d is the trackwidth, S
lr
(c

x
) is the cross-spectral density of the two pro"les and

j"c
y
/c

x
. This coherency function can be easily computed by means of the FFT

algorithm, giving curves identical to those presented in reference [33], obtained
using a di!erent methodology. The coherency function, plotted versus the
dimensionless variable c

x
d, computed from equation (19), is reported in Figure 5.
Figure 5. Isotropic coherency function versus c
x
d.
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3. NUMERICAL EXAMPLES

3.1. BRIDGE AND VEHICLE MODEL PROPERTIES

A three-span continuous bridge has been analysed with the following geometry
and material properties (see Figure 6):

l
1
"l

2
"l

3
"26.4 m, b"10.7 m, h"0.95 m, E"14.54]1010 N/m2,

l"0.3, mN "2375 kg/m2.

In order to compare the theoretical modal properties, three simple models for the
bridge have been developed. In the "rst model, the bridge has been approximated
by an Euler}Bernoulli beam on rigid supports, in the second a plate has
been adopted, using the method described in Section 2.2, while in the third a
"nite-element (FE) analysis has been carried out. The "nite-element model consists
of 2400 (800 in each span) elements equally spaced along the three directions. The
chosen elements are eight-noded linear bricks, whose number has been set on
the basis of convergency tests performed on the resulting modal properties of the
structure. In particular, in order to also respect the restrictions imposed on the
element aspect ratios by the FE code, four subdivisions along the z direction, 10
along the y (transverse) direction and 60 along the x (longitudinal) direction were
used. Obviously, since the beam theory cannot predict the torsional modes of the
bridge, a plate model is necessary for a full comparison with the FE model. The
frequencies of the plate model have been obtained by using the Rayleigh}Ritz
method with 9]5 and 17]9 terms in the series (12), while the modal damping ratio
has been assumed to be equal to 0.02 for the "rst two modes, and for the remaining
modes it has been chosen so that the orthogonality conditions (3) could be satis"ed.
The bridge modal parameters are summarized in Table 1 and the mode shapes in
Figure 7.
Figure 6. Bridge geometry and computed de#ection points.



TABLE 1
Bridge modal parameters

Beam model Plate model frequency (Hz) Damping FE model
frequency No of terms in series (12) ratio frequency

(Hz) Ratio f
k

frequency (Hz)
Mode i]j"9]5 i]j"17]9

1 4)71 4)79 4)77 0)0200 4)75
2 6)04 6)19 6)17 0)0200 6)13
3 8)82 9)11 9)09 0)0225 9)02
4 } 16.65 16)65 0)0337 16)19
5 } 17.55 17)53 0)0351 16)98
6 18)86 19)37 19)31 0)0381 18)90
7 } 19)57 19)51 0)0384 19)28
8 21)49 22)16 22)10 0)0428 22)03

TABLE 2
<ehicle modal parameters

Mode Natural Damping
frequency (Hz) ratio f

v

1 Body roll 0)95 0)33
2 Body pitch 1)06 0)59
3 Body heave 1)19 0)28
4 Front axle bounce 7)69 0)87
5 Front axle roll 8)90 0)41
6 Rear axle bounce 9)54 0)60
7 Rear axle roll 12)32 0)38
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In this study, the seven d.o.f. vehicle model presented in Figure 3 has been chosen.
The characteristics of the selected vehicle are shown in Appendix A, while its modal
parameters are summarized in Table 2.

3.2. NUMERICAL SIMULATIONS AND RESULTS

The results reported hereafter have been obtained considering crossing speeds in
the range 10}45 m/s; the road has been considered both perfectly smooth (results in
Figures 8}12) and rough (results in Figures 13}16).

The bridge response has been computed by superimposing the "rst 13 modes up
to 43.89 Hz, thus reaching a good compromise between computational time and
accuracy of results. For the latter reason, and considering Table 1 and Figure 7, the
modes have been calculated by using the Rayleigh}Ritz method with 9]5 terms in
the series (12).



Figure 7. First eight modes of the bridge. Modes: (a) 1, f"4.79 Hz; (b) 2, f"6.19 Hz; (c) 3,
f"9.11 Hz; (d) 4, f"16.65 Hz; (e) 5, f"17.55 Hz; (f) 6, f"19.37 Hz; (g) 7, f"19.57 Hz; (h) 8,
f"22.16 Hz.
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The vehicle crosses the bridge along the positive x direction with its right tyres at
a distance of 1 m from the right border of the bridge. Attention was focused on
mid-span points, and in particular on points 1}9 in Figure 6.

The Ampli"cation Factor is de"ned as the ratio of the maximum dynamic
de#ection to the maximum static de#ection (<"0) [6]. Very irregular behaviour,
possibly superimposed on an almost linear trend, can be easily noticed by looking
at Figures 8}10. It is considered that this is due to the damped oscillation of each
mode contributing to the total de#ection of the bridge.



Figure 8. Ampli"cation Factor versus vehicle speed for points 1 and 2.
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Figure 11 explains why the values of the Ampli"cation Factor marked with &&O''
and &&#'' in Figure 8 are quite di!erent, despite the slight velocity di!erence
(<"32.5 and 37.5 m/s). The reason is the di!erent relative phase of the mode
contributions as shown in Figure 11 (c}d); in particular, the contribution of the "rst
and second modes, the most important for the total oscillation of point 2 (Figure 6),
is highlighted in the zoomed frame. The modes over the "fth give a negligible
contribution.

Figure 12, referring to point 1, highlights the relevant contribution of the
torsional mode shapes [Figure 7(d}e)] to bridge de#ection, often neglected in
previous publications; obviously all the points in the centreline of the bridge do not
undergo any torsional e!ects.

An example of the tracks used in the numerical simulations in the case of the
rough road surface is reported in Figure 13. The left line is generated according to
the procedure adopted by reference [8], while the right line has been obtained by
a trial-and-error procedure in order to reproduce a coherency function of the kind
plotted in Figure 5 for a given value of d (see Appendix A). By comparing Figures
5 and 14, relative to the tracks shown in Figure 13, it can be seen that, with an
appropriate spatial frequency shift, the agreement in the range of interest is
satisfactory; real data reported in the literature [32, 33] also show a similar level of
agreement.

Figure 15 shows the great sensibility of the Ampli"cation Factor with respect
to the damping of the vehicle suspensions and to the roughness of the road



Figure 9. Ampli"cation Factor versus vehicle speed for points 4 and 5.

Figure 10. Ampli"cation Factor versus vehicle speed for points 7 and 8.
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Figure 11. Time histories relative to de#ections in point 2 for two di!erent speeds. (a) and (c)
correspond to the point marked by &&O'' in Figure 8; (b) and (d) correspond to the point marked by
&&#'' in the same "gure. In "gure (c) and (d) the mode contributions are highlighted.
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(i.e. maximum Ampli"cation Factors are reached for low vehicle damping and for
the damaged surface as classi"ed in Section 2.4).

In order to give a statistical signi"cance to the results, 20 random pro"les,
satisfying the hypothesis of isotropy, have been generated and, for each pro"le,
29 numerical simulations at di!erent velocities have been performed. In
Figures 16(a,b) the variation of the minimum, mean and maximum values
of the Ampli"cation Factor and the ratio of the standard deviation to the
mean value (lower than 5%) versus the velocity, relative to point 5, are plotted.
By way of comment to Figure 16, the randomness of the results, due to the
interaction of two main di!erent factors, i.e. the surface roughness and the vehicle
damping, should be pointed out. From this point of view, one should also remember
that in some cases the maximum values can de"nitely be higher (see for example
Figure 15).



Figure 12. Mode contributions to total de#ection in point 1.

Figure 13. Vertical surface pro"les of a damaged road: (a) left line; (b) right line. The lower and
upper cut-o! spatial frequencies are c

0
"0.015 cycles/m and c

J
"10 cycles/m, respectively.
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Figure 14. Generated coherency function versus spatial frequency for d"2.05 m.

Figure 15. Ampli"cation Factor relative to point 5 versus vehicle speed for a smooth (a) and rough
(b) surface (Figure 13). The curve (c) refers to a rough surface and to very small values of suspension
damping (the damping matrix of the vehicle}system is reduced to one-tenth of the original).

BRIDGE DYNAMICS 557



Figure 16. Variation with the velocity of the minimum (1), mean (2) and maximum (3) values of the
Ampli"cation Factor for point 5 (a) and of the ratio of the standard deviation (AFstd) to the mean
value (AFm) (b).

Figure 17. Ampli"cation Factor versus load speed for points 5 (smooth surface).
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It is possible to "nd many de"nitions for the speed parameter in the literature
and the following has been chosen [27]:

p"</2lf
1
, (20)

where l is the length of any single span and f
1
is the frequency of the "rst mode of the

bridge. Figure 17 represents the variation of the Ampli"cation Factor at point 5 for
a smooth surface as a function of the vehicle speed. The graph explains how the
Ampli"cation Factor changes within the speed range considered. It is clear that the
maximum reached by the Ampli"cation Factor at <"252.9 m/s [corresponding
to p"1 in equation (20)] is well above any sensible vehicle speed.

4. CONCLUSIONS AND FUTURE WORK

In this paper the dynamic interaction between a moving vehicle, modelled as a seven
d.o.f. spatial system, and a bridge, modelled as a multi-span plate, has been studied.

The numerical examples reported are relative to a three span bridge. The
theoretical modes, de"ned by means of the Rayleigh}Ritz approach, have been
found to be in good agreement with an FE model thus giving con"dence to the
analytical results.

The technique discussed and implemented includes both the #exural and
torsional modes of the structure, the roughness of the road and, in principle, allows
the introduction of any model of vehicle.

The good results obtained gave rise to the authors' curiosity and future work
should include: the problem of interaction in presence of orthotropic plates, the
line support sti!nesses, more sophisticated models of the bridge, including shear
deformation and rotary inertia e!ects as in reference [34], curved or skew bridges
[35}37], the simultaneous presence of more than one vehicle on the bridge,
more sophisticated models of the roughness of the road, the in#uence of vehicle
characteristics, and perhaps, comparison with the actual results of a real structure.
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APPENDIX A: VEHICLE CHARACTERISTICS

The characteristics of the selected seven d.o.f.s vehicle (see Figure 3) are
a
1
"3.153 m, a

2
"1.577 m, d"2.05 m, s"1.41 m;

m
s
"17000 kg, m

1
"600 kg, m

2
"1000 kg, J

y
"90]103 kgm2, J

x1
"550 kgm2,

J
x2
"600 kgm2, J

x
"13 000 kg m2;

k
1
"785]103 N/m, k

2
"1.57]106 N/m, k

s1
"116]103N/m, k

s2
"373]103N/m;

c
1
"1]102 N s/m, c

2
"2]102 Ns/m, c

s1
"25]103 Ns/m, c

s2
"35]103 Ns/m.
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